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Abstract. We present TRAIL: an algorithm that uses a novel consen-
sus procedure to tolerate failed or malicious shards within a blockchain.
Our algorithm takes a new approach of selecting validator shards for
each transaction from those that previously held the asset being trans-
ferred. This approach ensures the algorithm’s robustness and efficiency.
TRAIL is presented using PBFT for internal shard transaction process-
ing and a modified version of PBFT for external cross-shard validation.
We describe TRAIL, prove it correct, analyze its message complexity,
and evaluate its performance. We propose various TRAIL optimizations:
we describe how it can be adapted to other Byzantine-tolerant consensus
algorithms, how a complete system may be built on the basis of it, and
how TRAIL can be applied to existing and future sharded blockchains.

1 Introduction

In this paper, we present TRAIL – an algorithm for robust blockchain design.
A blockchain is a shared, immutable, append-only distributed ledger, typically
maintained by a peer-to-peer network [2], [3]. This design eliminates central-
ized control over transaction processing and makes the system potentially more
scalable, flexible, and efficient.

Blockchains are usually designed to tolerate Byzantine faults [4]. A Byzantine
peer may deviate from the algorithm and behave arbitrarily. Therefore, such
faults encompass a variety of failures and security threats. Despite the faults,
correct peers need to be able to arrive at consensus on proposed transactions.

Popular blockchains use proof-of-work based consensus algorithms [2] in
which peers compete for the right to publish records on the blockchain by
searching for solutions to cryptographic challenges. Such algorithms tend to be
conceptually simple and robust. However, they are resource intensive and envi-
ronmentally harmful [5]. Therefore, modern blockchain designs often focus on
cooperative consensus algorithms.

In these cooperative consensus algorithms, rather than compete, peers ex-
change messages to arrive at a joint decision. Such algorithms may tolerate some
number f of faulty processes. This number is called tolerance threshold. It is usu-
ally a fraction of the network size n. One of the most widely used algorithms in
this category is PBFT [6].

⋆ A technical report [1] contains a more extensive version of the paper.



Scaling up a Byzantine-robust algorithm is challenging as it usually in-
volves system-wide broadcasts. Such broadcasts are expensive in large systems.
A prominent approach of improving scalability in blockchains is sharding. In
sharding, the network peers are divided into committees or shards. Each shard
is made responsible for a subset of the processing done or the data stored by the
network. Every shard internally runs a consensus algorithm, such as PBFT, and
coordinates with other shards to achieve global consistency. Thus, the overall
workload is distributed and the processing of records is potentially accelerated.

However, such sharding is at cross-purposes with fault tolerance: the network
is only as reliable as any of its shards. For example, given a fixed number of
peers, decreasing the shard size increases the number of available shards. This
results in greater parallelism in transaction processing. Yet, a small shard is
more vulnerable to failure since it has lower tolerance threshold f of its internal
consensus algorithm. The sharded blockchains presented in the literature usually
assume that no shard tolerance threshold is breached. This places a limit on the
efficiency of the sharding approach to performance improvement since shards
need to be made large enough to ensure that they never fail.

In this paper, we address the handling of complete shard failures which poten-
tially allows aggressively small shards and removes the shard size scalability ob-
stacle. A naive approach would be to group shards into static meta-shards. Such
a meta-shard would treat individual shards as peers and run a meta-consensus
algorithm among them to validate transactions across shards to withstand in-
dividual shard failures. However, concurrent transactions that are assigned to
different shards would be verified by the same static meta-shard, regardless of
the transactions’ nature or history. This may create a performance bottleneck.

Paper contribution. We propose TRAIL: a novel approach to cross-shard
validation. With this technique, a trail of shards dynamically tracks each coin
according to its transaction history. The source shard runs an internal shard con-
sensus algorithm to validate and linearize transactions. The trail of shards runs a
cross-shard consensus algorithm to confirm the transaction and fortify it against
shard failure. We present TRAIL using PBFT for both internal shard transac-
tion processing and external cross-shard validation. We utilize PBFT since it
is well-known and widely used. Our solution may use various PBFT efficiency
enhancements such as parallel transaction processing and transaction pipelining.
Moreover, TRAIL is independent of the specifics of sharding operation and may
be adapted to enhance the robustness of consensus algorithms other than PBFT.

We evaluate the performance of TRAIL using an abstract simulator and
study its transaction confirmation rate, scalability and robustness against peer
and shard failure. Our experiments indicate that TRAIL adds shard failure pro-
tection with relatively modest resource expenditure.



2 Network Model, Problem Statement, PBFT

System model. We assume a peer-to-peer network. Each peer has a unique
identifier. A peer may send a message to any other peer so long as it has the
receiver’s identifier. Peers communicate through authenticated channels: the re-
ceiver of the message may always identify the sender. The communication chan-
nels are FIFO and reliable.

Network peers are grouped into shards. Every shard has a unique identifier.
For simplicity, we assume that all shards are the same size s. Each shard main-
tains a portion of the blockchain’s data. Each shard peer stores a copy of its
shard’s data. Any peer may determine the shard identifier of any other peer in
the network. Peers are either correct or faulty. Faults are Byzantine [4]: a faulty
peer may behave arbitrarily. A peer tolerance threshold f is the maximum num-
ber of faulty peers that a shard can tolerate. A shard is correct if it has at most
f faulty peers. The shard is faulty otherwise.

Data model and the problem. A coin is a unit of ownership whose move-
ments are recorded by the network. Each coin has a unique identifier, which can
track fungible assets like currency (e.g., UTXO) or non-fungible assets like NFTs
or smart-contracts, without affecting the fungibility of the currency. A wallet is a
collection of coins. Each shard is responsible for storing and updating a disjoint
subset of the network’s wallets. A client is an entity that owns a wallet. We
assume a client is external to the peer-to-peer network but may communicate
with any peer. Clients may submit transactions to the network requesting a coin
to be moved from a source wallet to a target wallet. The peers are able to au-
thenticate the wallet owner; the peers accept transaction requests for the wallet
owned by the client. The approval of the target wallet owner is not required.

A blockchain algorithm constructs a sequential ledger of transactions reflect-
ing coin movements. Two transactions t1 and t2 are consequent in this ledger if
they operate on the same coin and there is no transaction t3 also operating on
this coin such that t3 comes after t1 and before t2.

An algorithm state is an assignment of values to variables in all processes.
Algorithm code contains a sequence of actions guarded by boolean guard pred-
icates. An action whose guard evaluates to true is enabled. An algorithm com-
putation is a sequence of steps such that for each state si, the next state si+1 is
obtained by executing an action enabled in si.

To make the TRAIL correctness argument more rigorous, we formally state
the problem that it solves.

Definition 1. An algorithm solves the Coin Transmission Problem if it con-
structs a transaction ledger satisfying the following two properties:
ownership continuity – for any pair of consequent transactions t1 and t2, the
target of t1 is the source of t2;
request satisfaction – if the owner requests a coin movement from its wallet, this
request is eventually satisfied.



Ownership continuity is a safety property that requires that a coin can only
be moved out of a wallet once for each time it is moved into it. This is crucial
because it prevents the same coin from being spent more than once—thereby
precluding double-spend attacks and disallowing spending money that the client
does not have. The request satisfaction property guarantees liveness: the client
request is eventually fulfilled.

PBFT. PBFT is a Byzantine-robust consensus algorithm. Its tolerance thresh-
old is f = ⌊(n− 1)/3⌋, where n is the total number of peers in the system.

Peers communicate directly with each other via message broadcast. One of
the peers is a leader. The leader linearizes client requests. A period of single
leader continuous operation is a view. PBFT is in normal operation if the leader
is correct. Normal operation has three phases: pre-prepare, prepare, and commit.

Once the leader receives a client transaction request, it assigns it a unique
sequence number and starts the pre-prepare phase by broadcasting a pre-prepare
message containing the transaction and the sequence number to all peers. In the
prepare phase, each peer receives the pre-prepare message and broadcasts a pre-
pare message containing the information that it received from the leader. If a
peer receives n−f −1 prepare messages (excluding itself) that match the initial
pre-prepare, this peer is certain that correct peers agree on the same transac-
tion. In this case, the peer starts the commit phase by broadcasting a commit
message. Once a peer receives n− f commit messages, normal PBFT operation
concludes and the peer informs the client that the transaction is committed. The
transaction is confirmed once the client receives f + 1 commits.

If the leader is faulty, the client requests may not be carried out. In this
case, the client or the peers initiate a view change to replace the leader. The
view change process is designed to maintain transaction consistency through the
transition: if a transaction is committed by a correct peer in the old view, the
new leader submits it with the same sequence number so that the rest of the
peers commit it in the new view.

If the number of faulty peers does not exceed the peer tolerance threshold f ,
PBFT guarantees the following three properties: agreement – if a correct peer
confirms a transaction, then every correct peer confirms this transaction; total
order – if a correct peer confirms transaction t1 before transaction t2, then every
correct peer confirms t1 before t2; and liveness – if a transaction is submitted to
a sufficient number of correct peers, then it is confirmed by a correct peer. We
assume these properties also apply to correct clients.

The first two properties are satisfied regardless of the network synchrony.
The liveness property is guaranteed only if the network is partially synchronous,
meaning that the message transmission delay does not indefinitely grow without
a bound.
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Fig. 1: Trail membership modification under consequent transactions for t = 4.
The first transaction moves a coin from a wallet in shard S4 to a wallet in shard
S5. The second moves the same coin from S5 to S6.
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Fig. 2: Message transmission in TRAIL’s normal operation. The coin trail con-
tains shards: S1 − S4. The coin is located in a wallet stored by shard S4. A
client sends a transaction moving the coin from S4 to a wallet of shard S5.
First, the S4 runs internal PBFT ; then, the phases of external shard PBFT.
After committing, the shards notify the client and the target shard.

3 TRAIL Description

Algorithm outline. The objective of the algorithm is to ensure the validity
of coin transitions between wallets despite faulty peers and shards. To counter
malicious behavior of faulty shards, TRAIL requires a collection of shards to
agree on coin movement. This collection is called a trail. A trail is composed of
the t unique shards whose wallets the coin visited most recently. Refer to Figure 1
for an illustration. Notice that this trail is specific to a coin and changes as the



coin moves from wallet to wallet. At any point in the computation, each coin
may have its own separate trail of shards. We assume that each client knows
the identities of the coins in its wallet as well as their trails. Shard tolerance
threshold F is the maximum number of faulty shards that TRAIL may tolerate.
The length of the trail, t ≥ 3F +1. Note that F and the peer tolerance threshold
f are not related.

TRAIL consists of two parts: (1) internal source shard PBFT and (2) ex-
ternal trail PBFT. To initiate the movement of a coin, the client that owns the
source wallet sends a transaction request to the shard that holds it. To linearize
received transaction requests and ensure that each individual transaction has an
agreed-upon sequence number, the source shard peers execute internal PBFT,
see Figure 2 for illustration, in which shard S4 is the source shard.

Once the source shard peers agree on this transaction, they initiate a modified
external trail PBFT. For that, each source shard peer broadcasts a pre-prepare
message to every peer of every trail shard. Once a trail peer receives s− f such
pre-prepares from the source shard, it initiates the next PBFT phase by sending
prepare messages to every peer in every trail shard. In this way, each shard-to-
shard broadcast emulates an individual message transmission in classic PBFT.
This continues until the external PBFT instance commits. After that, each trail
shard peer records the transaction in its ledger and notifies the target shard and
the client.

Once the target shard and the client are notified by t− F trail shards, they
record the transaction in their ledgers. The target shard, which is shard S5 in
Figure 1, becomes the source shard for the next transaction. If the leader of the
source shard, S4, is faulty, the other peers of the source shard execute a view
change, switch to a new leader, and continue with internal PBFT.

If the source shard as whole is not faulty, i.e. the number of faulty peers in
the source shard is below the tolerance threshold f , then the faulty peers may
not influence the trail shard. Indeed, for each external PBFT message, each peer
of the trail shard expects at least s− f individual messages.

If the number of peers in the source shard exceeds the tolerance threshold
f then the whole shard is faulty. In this case, the individual messages of the
faulty source shard peers are equivalent to the faulty messages of the source
shard. The external PBFT guarantees that, despite the faulty shard, no spurious
transactions will be recorded by the trail shards and that eventually the faulty
leader shard is replaced.

Specifically, the trail shards execute a view change, switch to a new shard
as a leader, and continue with the consensus process, including a new internal
PBFT instance being performed within the new leader shard. Note that in the
latter case, the record of the transaction may be placed in the trail shards but
not in the faulty source shard that is nominally responsible for maintaining the
source wallet record. This is an essential feature of our algorithm: the faulty
source shard that stores the client wallet may be bypassed.

Let us now describe the algorithm in detail.



TRAIL constants, variables, and functions. These constructs are shown
in Algorithm 1. Each peer with id p knows the following constants: f – peer
tolerance threshold (the maximum number of faulty peers in a correct shard); F
– shard tolerance threshold (the maximum number of faulty shards); s – shard
size; and t – trail size.

Several variables are common across transactions. We list them in a single
place for convenience. Each transaction uses a coin identifier coin; a source wal-
let id sWallet; a target wallet is tWallet; a transaction sequence number seq
assigned by the source shard; and the sequence of shard ids trail that indicates
the trail shards for this coin at its present location. Each peer maintains a ledger,
which is a sequence of transaction records that the peer confirmed in a trail or
received as a target.

TRAIL functions are shown in Algorithm 2. They are grouped by their pur-
pose. Ledger maintenance functions are in Lines 16–27. TRAIL has two such
functions.

Function Record appends the transaction record to the ledger. Function
IsPresent(coin, wallet) returns true if the ledger’s most recent transaction
record about coin moved it to wallet, i.e. there is a transaction where wallet is
the target wallet and this record is not followed by a transaction moving coin
from wallet to a different target wallet.

TRAIL uses several functions for wallet lookup and communications. They
are shown in Lines 28–38. Function GetShard(wallet) returns the id of the
shard that stores wallet. We assume that every peer is able to identify which
shard maintains each wallet.

Functions Send and Receive are single-message transmissions to the spec-
ified sender and receiver with straightforward functionality. In function Send-
ToShard(shard,message), the sender peer broadcasts a message to all peers
in shard. Function ReceiveFromShard(shard,message) returns true once
the peer receives message from s− f unique peers of shard.

The internal source shard PBFT is represented by two functions in TRAIL.
They are shown in Lines 39–46. Function StartShardPBFT initiates the
PBFT operation. The last function CompleteShardPBFT signifies that the
internal PBFT is completed and the peers assigned sequence number seq to the
transaction.

TRAIL phases. The actions for the algorithm are presented in Algorithms 2
and 3. We only show normal operation code for TRAIL. View change code is
added accordingly. Client and target code is not shown. See Figure 2 for the
illustration of algorithm operation.

TRAIL phases execute the internal source PBFT and the external trail
PBFT. Phase 0: Init (see Lines 48–53) starts when a peer receives a trans-
action request from a client. If the peer contains the source wallet, i.e. it is the
source shard for the transaction, the peer initiates internal shard PBFT. After
the source shard runs classic PBFT, if the shard is not faulty, all the source



Algorithm 1: TRAIL: Normal Operation, Variables
1 Constants
2 p ▷ process id
3 f ▷ peer tolerance threshold
4 F ▷ shard tolerance threshold
5 s ▷ shard size; s ≥ 3f + 1
6 t ▷ trail size; t ≥ 3F + 1

7 Transaction variables
8 coin ▷ coin to be transmitted
9 sWallet ▷ coin owner wallet

10 tWallet ▷ coin recipient wallet
11 seq ▷ transaction sequence number
12 trail ▷ sequence of confirming shard

13 Process variables
14 ledger ▷ sequence of records of committed
15 transactions

▷ record format: ⟨coin, sWallet, tWallet, seq, trail⟩

shard peers agree on the transaction and its sequence number. The completion
of internal PBFT starts Phase 1: Pre-prepare (Lines 54 through 58). Each
source shard peer sends a pre-prepare message to a peer of every trail shard.

The receipt of s−f messages from the source shard starts Phase 2: Prepare
(Lines 59–64) in all the trail shards. Once a peer of the trail shard ascertains
that the coin is present in the source wallet, i.e. the transaction is valid, the peer
sends a prepare message to all of the trail shards.

In Phase 3: Commit (Lines 65–74), each trail peer assembles the prepare
messages. Variable prepShards.coin.seq collects the identifiers of the shards from
which this peer has received s − f prepare messages. If the number of these
identifiers is t−F , the peer sends commit message to all trail shards, signifying
that it is ready to commit.

Phase 4: Reply (Lines 75–90) is similar to theCommit phase. Once enough
commit messages from trail shards arrive, the peer records the committed trans-
action to its ledger and notifies the peers of the target shard and the client.

4 TRAIL Correctness and Efficiency

Theorem 1. Algorithm TRAIL solves the Coin Transmission Problem with at
most F Byzantine shards and at most f individual Byzantine faults in each
correct shard.

See [1] for the proof of the theorem.

4.1 TRAIL Algorithmic Extensions and Implementation
Considerations

Parallelizing transactions, splitting, merging and mining coins. The
same source shard may run multiple external or internal transactions so long as
they concern different coins.



Algorithm 2: TRAIL: Normal
Operation, Functions

16 Ledger functions
17 function

Record(coin, sWallet, tWallet, seq, trail)
18 ▷ add transaction record to ledger
19 function IsPresent(coin, wallet):
20 if ∃r1 ≡ ⟨coin, x, wallet, · · · ⟩ ∈ ledger

and
21 ∀r2 ≡ ⟨coin, wallet, y, · · · ⟩ ∈

ledger ⇒
22 r2 precedes r1 in ledger then
23 return true
24 else
25 return false

26 function GetTrail(coin):
27 r ≡ ⟨coin, sWallet, tWallet, seq, trail⟩

such that r is the last record for coin
in ledger return trail

28 Communication and wallet functions
29 function GetShard(wallet)
30 ▷ returns the id of the shard that stores

wallet
31 function Send(peer, message)
32 ▷ send message to peer
33 function Receive(peer, message)
34 ▷ receive message from specific peer
35 function SendToShard(shard, message)
36 ▷ send message to all peers of shard
37 function

ReceiveFromShard(shard,message)
38 ▷ receive message from s− f unique

peers of shard

39 Internal PBFT functions
40 function

StartShardPBFT(coin, sWallet, tWallet)
41 ▷ initiate internal shard PBFT
42 ▷ by sending request to shard leader
43 function CompleteShardPBFT()
44 ▷ finish internal shard PBFT
45 ▷ return ⟨coin, sWallet, tWallet, seq⟩
46 ▷ with unique sequence number seq

47 Basic PBFT operation
48 Phase 0: Init ▷ done by source shard leader
49 upon Receive (client,

50 request⟨coin, sWallet, tWallet⟩):
51 if p ∈ GetShard(sWallet) and
52 IsPresent(coin, sWallet) then
53 StartShardPBFT(coin, sWallet, tWallet)

Algorithm 3: TRAIL: Normal
Operation, Cross-Shard Actions

54 Phase 1: Pre-prepare ▷ done by source
shard

55 upon ⟨coin, sWallet, tWallet, seq⟩ ←
56 CompleteShardPBFT() :
57 forall shard ∈ GetTrail(coin) do
58 SendToShard(shard,

prePrepare⟨coin, sWallet, tWallet, seq⟩)

59 Phase 2: Prepare ▷ done by non-source
shards

60 upon ReceiveFromShard(senderID,

61

prePrepare⟨coin, sWallet, tWallet, seq⟩):
62 if IsPresent(coin, sWallet) then
63 forall shard ∈ GetTrail(coin) do
64 SendToShard(shard,

prepare⟨coin, sWallet, tWallet, seq⟩)

65 Phase 3: Commit ▷ done by all trail shards

66 prepShards.coin.seq ← ∅
67 upon ReceivedFromShard (
68 senderID ∈ GetTrail(coin),
69 prepare⟨coin, sWallet, tWallet, seq⟩):
70 prepShards.coin.seq ←
71 prepShards.coin.seq ∪ {senderID}
72 if |prepShards.coin.seq| = t− F − 1

then
73 forall shard ∈ GetTrail(coin) do
74 SendToShard(shard,

commit⟨coin, sWallet, tWallet, seq⟩)

75 Phase 4: Reply ▷ done by all trail shards
76 cmtdShards.coin.seq ← ∅
77 upon ReceivedFromShard (

78 senderID ∈ GetTrail(coin),
79 commit⟨coin, sWallet, tWallet, seq⟩):
80 cmtdShards.coin.seq ←
81

cmtdShards.coin.seq ∪ {senderID}
82 if |cmtdShards.coin.seq| = t− F then
83 if GetShard(tWallet) ̸∈

GetTrail(coin) then
84 newTrail←

GetShard(tWallet) ∥
85 all of GetTrail(coin) except

last
86 else
87 newTrail← GetTrail(coin)

88 Record(coin, sWallet, tWallet, seq,
newTrail)

89 SendToShard(GetShard(tWallet),

reply(coin, sWallet, tWallet, newTrail))
90 Send(client, reply(coin, sWallet, tWallet,

newTrail))



Multiple coins may be merged and a coin may be split to accommodate more
complex transactions: this is analogous to creating 1 dollar out of 100 cents or
vice versa. Both operations may be convenient to simplify transactions or make
them more efficient. For example, a client wants to send 100 people each 1 cent
of their 1 dollar, with coin splitting this can be done in a single transaction. If
a coin is split, all its portions inherit the old coins’ trail. Coin merging is a bit
more involved since the merging coins, even if they are located in the same wallet,
may have different trails. To merge, the two coins are marked as merging and
their movement transactions are executed jointly. The coins are finally merged
once they travel together for the length of the trail. At this point, they share
all shards of the trail. This allows clients to combine coins and transfer them to
another wallet in a single transaction.

To create, or mine, a new coin, it needs to acquire a trail of length t. This
may be accomplished by forming a committee of arbitrary t shards and running
a PBFT on this committee to agree on the new coin’s trail. These processes
guarantee that all coins have a trail of the required length regardless of the
origin of the coin.

Optimizing internal transaction validation. To decrease message overhead,
transactions are divided into internal and external. In an internal transaction
the source and target wallet are maintained by the same shard. To confirm this
transaction, the source shard does not consult the trail shards; it runs internal
PBFT, and thus relies on the internal shard fault tolerance to maintain wallet
integrity. External transactions are processed as usual: with external PBFT.

The trade-off for this optimization is decreased shard fault tolerance: the
trail shards are not aware of the source shard internal transactions. However,
shard failure may be determined by a failure detector [7]–[12]. Such a detector
establishes a shard failure and notifies other shards. In the event of a detected
shard failure, the trail shards perform a failed shard recovery procedure to re-
store the integrity of the system: the wallets maintained by the failed shard are
moved to other shards and their contents are restored to the last known external
transaction. The clients have to re-submit internal transactions.

Wallet location, client data recovery, shard maintenance. While coins
move between shards, the wallets are assumed to be stationary. For quick shard
lookup by the client, the wallet id might contain the shard number. Alternatively,
the wallet-to-shard mapping may be recorded in the same or in a separate ledger.
For efficiency, wallets frequently participating in joint transactions may be moved
to the same shard.

If a client loses its local information about the coin contents of its wallet, it
may be able to recover it by conducting a network-wide query. Note that asking
the shard that keeps the wallet information alone is not sufficient: the shard
may be faulty. Instead, the complete network broadcast is required. The trail
shards that confirmed moving the coin should answer to the recovering client.



Again, since some shards may be faulty, the client considers the coin present in
its wallet if the trail confirms its location.

In TRAIL description, we assumed that the shard sizes are uniform. However,
this does not have to be the case. Instead, the shards may grow and shrink as
peers join or leave system. Shard sizes may also be adjusted in response to
transaction load requirements. Shard membership may be maintained in the
shard ledger or, alternatively, in a separate membership ledger.

Algorithm parameter selection. TRAIL operates correctly regardless of the
concrete values of shard size s and trail size t. These parameters, however, affect
the algorithm performance. Larger s makes it less likely that the complete shard
fails. Yet, larger s makes the internal consensus algorithm less efficient. The
smaller s necessitates larger trail size t to protect against shard failure.

5 Performance Evaluation

Simulation setup. We evaluate the performance of TRAIL in an abstract al-
gorithm simulator QUANTAS [13]. QUANTAS simulates multi-process compu-
tation, message transmission and has extensive experimental setup capabilities.
The simulator is implemented in C++. It is optimized for multi-threaded large
scale simulations [14]. The code for our TRAIL implementation in QUANTAS
as well as our performance evaluation data is available online [15], [16].

The simulated network consists of individual peers. Each pair of peers is
connected by a message-passing channel. Channels are FIFO and reliable. A
computation is modeled as a sequence of rounds. In each round, a peer receives
messages that were sent to it, performs local computation, and sends messages
to other peers.

Peers are divided into shards. Shard leaders propose transactions; clients are
not explicitly simulated. A transaction has a 25% probability of having source
and target wallets in separate shards. Internal transactions are not externally
verified by the trail of shards. If a shard is Byzantine, it generates invalid cross-
shard transactions only. Specifically, the shard creates transactions moving coins
that it has already spent.

Experiment description. Figures 3, 4, 5, and 6 show the dynamics of transac-
tion processing during a computation. In these simulations, a computation runs
for 500 rounds. The internal faulty peer tolerance threshold f is 7. The shard
size is s = 3 ·f+1 = 22. The faulty shard tolerance threshold F is 2. This makes
the trail size 3 ·F +1 = 7. In the experiments, the number of actual faulty shards
is equal to the shard fault tolerance threshold F ; that is, we run the experiments
with maximum tolerance. The faulty shards behave correctly at the start of the
simulation and fail at round 100. The total number of shards in the system is
S = 50. Therefore, the network size is S · s = 1100. We run 15 experiments per
data point and show the average of the results.



Fig. 3: Transactions approved over time
without TRAIL shard validation. The
network approves both honest and ma-
licious transactions.

Fig. 4: Transactions approved over time
with TRAIL shard validation. The net-
work approves honest transactions only.

Fig. 5: Transactions approved over time
in TRAIL with shard validation and
wallet recovery from the failed shards.
Correct shards detect the failure and
submit additional transactions moving
coins from the failed shards.

Fig. 6: Percentage of wallets compro-
mised by malicious transactions.

Figures 3, 4, and 5 show the accumulated counts of started and confirmed
transactions. We distinguish between the honest transactions generated and the
total number of transactions, which includes malicious transactions generated
by faulty shards. The number of honest confirmed transaction is lower.

In Figure 3, no cross-shard validation is performed. In this figure, the num-
ber of confirmed transactions matches the total number of transactions; that
is, transactions are confirmed whether they are malicious or not. The graph in-
dicates a certain delay before transaction starting and confirmation due to the
operation of external and internal PBFT.

In Figure 4, TRAIL validates the external transactions. Malicious transac-
tions are not confirmed, and the total number of confirmed transactions only
accounts for the honest transactions.



In graph shown in Figure 5, TRAIL uses the failed shard recovery proce-
dure. Specifically, at round 100, when F shards fail, TRAIL detects the faults
and generates transactions to move the coins from the faulty shard wallets to
the correct ones. This explains the increase in the transaction generation and
confirmation rates near round 100 in the figure.

Figure 6 shows the effect of malicious transactions on the overall system
integrity. A wallet is compromised if it is in a faulty shard or if it receives a coin
from a compromised wallet that is not possessed by that compromised sender
wallet. A wallet is safe otherwise. The safety of a compromised wallet can be
restored by the failed shard recovery procedure. The solid line in Figure 6 shows
the wallet compromise trend if no cross-shard validation is used. In this case,
the failed shards continuously generate malicious transactions, compromising
progressively larger number of wallets in the correct shards of the network. In
the case in which cross-shard validation is used, the dashed line in Figure 6, the
number of compromised wallets does not exceed the number of wallets in the
failed shard. In the case with the failed shared recovery procedure, all wallets
eventually become safe again: the correct shards generate coin wallet recovery
transactions. The delay in wallet recovery shown in the graph is due to the
validation of these transactions.

Fig. 7: Throughput with respect to the number of peers in the network for dif-
ferent fault tolerance levels.

Figure 7 shows the performance of TRAIL at scale. We run these experiments
with a maximum of 148 shards made up of 13 peers per shard. Each data point
represents the average throughput from 5 simulations of 200 rounds each. We
plot TRAIL’s performance with three shard tolerance thresholds F : 0, 1 and
2. There is no cross-shard validation in case of F = 0. The figure indicates
that the performance of TRAIL scales well with network size increase. Larger
fault tolerance thresholds incur more overhead. Therefore, the transaction rate
is lower for higher values of F .



6 Related Work and Its Application to TRAIL

Sharding blockchains. A number of sharding blockchains are presented in the
literature. See Le et al. [17] for an extensive recent survey. We, however, have not
seen an approach where sharding is done on the basis of the coin trail. We are
not aware of any blockchain that is robust to shard failure. We believe that most
of the published blockchains, even if they do not use PBFT, can employ TRAIL
to fortify themselves against shard failures. For this, consensus on transactions
has to be deferred until the transaction’s trail confirms it.

PBFT optimizations and replacements. There are numerous proposals to
optimize PBFT performance. See Wang et al. for a survey [18]. Several propose
using multiple leaders concurrently [19]–[21]. Mir-BFT [19] and RCC [21] sug-
gest accelerating PBFT by processing non-conflicting requests concurrently. The
algorithms have multiple leaders that process these requests simultaneously. Big-
BFT [20] further enhances parallelism by pipelining subsequent requests. The
above PBFT optimizations can be applied in TRAIL to the internal shard con-
sensus protocol in a straightforward manner. Most of these optimizations can
also be applied to the external TRAIL algorithms as well.

7 Future Work

The TRAIL algorithm presented in this paper is the first to systematically ad-
dress Byzantine shard failure protection in blockchains for cryptocurrencies. We
foresee that it might be developed into a fully-fledged system. Alternatively,
TRAIL may be used as an add-on component to fortify existing blockchains
against shard failure. As a third alternative, TRAIL may be enhanced to handle
more challenging conditions, such as network partitioning [22] or dynamic net-
works [23]. Any and all of these alternative directions will increase the robustness
of future blockchains.

Acknowledgements. We would like to thank Mitch Jacovetty of Kent State
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