
 
 

 



Partitionable Blockchain 

 

 

 

 

 

 

 

 

 

 

 

 

A thesis submitted to the  

Kent State University Honors College 

in partial fulfillment of the requirements 

for University Honors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by 

 

Joseph Oglio 

 

May, 2020 

 



 
 

 



 ii 

 

 

Thesis written by 

 

Joseph Oglio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by 

 

 

_____________________________________________________________________, 

Advisor 

 

 

______________________________________, Chair, Department of Computer Science 

 

 

Accepted by 

 

 

___________________________________________________, Dean, Honors College 

 

 

 



 iii 

 

TABLE OF CONTENTS 

 

 

LIST OF FIGURES…..………………………………………………………………….iv 

 

ACKNOWLEDGMENTS……………...………………………………………………...v 

 

CHAPTER 

  

1. INTRODUCTION……………………………………………….……………….1 

 

2. PARTITIONABLE BLOCKCHAIN...…………………………….…………….7 

 

2.1.   Notation……………………………..…………………...…………………7 

2.2.   The Partitionable Blockchain Consensus Problem…………………..……10 

2.3.   Impossibility...………………………………………………………….…10 

2.4.   Partitioning Detectors……………………………………………………..12 

2.5.   Algorithm PART………………………………………………………….15 

2.6.   Performance Evaluation…………………………………………………..19 

2.7.   Multiple Splits…………………………………………………………….21 

 

3. CONCLUSION, EXTENSIONS, AND FUTURE WORK…………………….25 

 

    

 

BIBLIOGRAPHY………………………………………………………………….…...27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

LIST OF FIGURES 

 

Figure 2.1 Implementation of ◊AGE using WAGE …………………..…….…………….14 

 

Figure 2.2 Algorithm PART.………………………………………………….…………...22 

 

Figure 2.3 Global blockchain tree generated by PART.…………………………..……….23 

 

Figure 2.4 PART with perfect AGE. Split at round 100.………………………….……….23 

 

Figure 2.5 PART+◊AGE. Split at round100, detector recognizes it at round 200…..…….23 

 

Figure 2.6 PART+◊AGE. No split in computation, detector mistakenly recognizes it at 

round 100, corrects at round 200……………………..………………………………….24  



 v 

ACKNOWLEDGMENTS 

 

 

 The author would like to thank Dr. Mikhail Nesterenko for his support as an 

advisor throughout this project. The author would also like to thank Dr. Gokarna Sharma 

for his support, as well as Kendric Hood for his advice and guidance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



1 
 

 
 

 

1 
I N T R O D U C T I O N † 

 
 

 

Blockchain. Peer-to-peer networks are an attractive way to organize distributed 

computing. Blockchain is a peer-to-peer technology for building a shared, im- 

mutable, distributed ledger. A prominent blockchain application is cryptocurrency 

such as Bitcoin [32] or Ethereum [42]. In a blockchain cryptocurrency, the ledger 

records financial transactions. The transactions are appended to the ledger block 

by block. This application is decentralized and peers have to agree on each block. 

Such consensus is the foundation of blockchain algorithms. 

Classic robust distributed consensus algorithms [3, 7, 10, 19, 26, 30] use coopera- 

tive message exchange between peers to arrive at a joint decision. However, such 

algorithms require participants to know the identity of all peers in the network. 

This is often infeasible in modern high-turnover peer-to-peer networks. 

 
Nakamoto consensus. Alternatively, Bitcoin uses Nakamoto consensus [32] where 

the participants compete to add blocks to the ledger. This algorithm does not 

require complete network knowledge. Due to the simplicity and robustness of 

the algorithm, Nakamoto consensus became the dominant approach to consensus 

in cryptocurrency design. In Nakamoto consensus, initial funds are distributed 

between participants. Such a participant can then submit a transaction request 

which moves money from one account to another. 

Transactions may conflict. For example, if a transaction request is to withdraw 

ten dollars from an account that has only nine, this transaction is invalid. Also, if 

there are two requests to withdraw nine dollars from this account, then only one 

request can be accepted. 

 
 
 

 

†This thesis is based in part on an article [21]. 



2 
 

 
 

 
 

These requests are received by specialized peers called miners. A miner groups 

valid transactions into a block. To this block, the miner adds a link to the previous 

block. To be accepted by other miners, the newly created block has to be mined. 

The miners compete to get their mined blocks accepted. To resolve the competition, 

mining a block is made difficult. 

Mining is done using a hash function. The hash function takes the data in the 

block and transforms it into a number, called a hash. However, in Nakamoto 

consensus, not every hash is acceptable. To compute an acceptable hash, a miner 

must add an additional number to the block. This number is called a nonce. 

Finding the nonce that makes the block acceptable is mining. The cryptographic 

hash function is designed so that it is impossible to determine the appropriate 

nonce except through trial and error. This process is computationally intensive. 

However, verifying the mined block is relatively simple: just hash the data and 

the nonce to check if the obtained hash is acceptable. Therefore, other miners may 

easily ensure that the block is properly mined. 

The mined block is then broadcast to all other miners. Once a miner receives a 

newly mined block, it starts mining the next block by linking it to the new arrival. 

Thus, a chain of mined blocks is formed. This chain is called a blockchain. Since 

mining is performed concurrently, two blocks may be mined at the same time. This 

is called a fork. A fork creates ambiguity as miners cannot agree on a single block. 

To minimize the possibility of a fork, the mining complexity is dynamically adjusted. 

Bitcoin is designed to maintain the mining complexity so that the expected mining 

time of a block is ten minutes. 

The blockchain is immutable and secure due to the algorithm design. For example, 

a malicious peer may try to introduce a transaction that fraudulently sends money 

to the account that it controls. For this, the peer needs to alter a transaction in a 

previously mined block. To make the block valid, the malicious peer has to re-mine 

it. To make this block acceptable to the network, this peer also needs to re-mine 

all following blocks. Since all miners in the network compete to mine blocks, the 

blockchain integrity is protected by the combined computing power of the network. 

Moreover, blockchain modification may not be easily accomplished as every miner 



3 
 

 
 

 
 

has its own copy of the blockchain. This distributed security is a major blockchain 

advantage over traditional centralized security approaches. 

 
Partitionable blockchain. Ordinarily, a blockchain consensus algorithm assumes 

that the network remains connected at all times. That is, the network suspends 

operation while parts of the network are unable to communicate. Alternatively, 

a single primary partition makes progress while the others are not utilized. The 

problem of concurrently using all partitions is difficult since the partitioned peers 

can not communicate and may approve transactions that conflict and thus violate 

the integrity of the combined blockchain. 

It is assumed that partitioning interruptions are infrequent or insignificant for 

network operation. However, this may not be the case. While long system-wide 

splits may be rare, brief separations are common. This can happen, for example, 

if groups of peers are connected via a small set of channels. If these channels are 

congested, the groups are effectively disconnected and the network is temporarily 

partitioned. 

As blockchain becomes a larger component of the financial market, the pressure 

to increase the system’s availability will grow. Many financial applications, such as 

high frequency trading [25], are sensitive to even a slight delay. A system delay that 

lasts a few milliseconds may cost its users substantial time and money. Hence, a 

blockchain-based cryptocurrency that is available through partitioning is required 

for this technology to realize its potential. 

In this thesis, we formally address the possibility of partitionable consensus in 

cryptocurrency blockchain. What enables the solution is the possibility of splitting 

the accounts and processing transactions in the partitions independently without 

violating the integrity of the complete blockchain. 

 
Blockchain improvements and related work. We use the asynchronous system 

model for the study of partitionable consensus. This means that a message sent to 

a peer can take an indefinite amount of time to arrive. A message can not be lost 

though so it will eventually be delivered to the peer. This model does not place 



4 
 

 
 

 
 

assumptions on the peers’ relative computation power or message propagation 

delay and thus has near-universal applicability. The alternative is a synchronous 

system model in which all messages are delivered within a set amount of time. 

Consensus is impossible in the asynchronous system even if only a single peer is 

allowed to crash [18]. Intuitively, peers are not able to distinguish a crashed process 

from a very slow one. This impossibility is circumvented with crash failure detec- 

tors [11, 13] that provide minimum synchrony to allow a solution. We pattern our 

investigation to this classic approach. We show the impossibility of a partitionable 

consensus solution in the asynchronous system and then introduce partitioning 

detectors to enable it. 

There are a number of recent publications dealing with the implementation or 

modification of classic consensus [3, 7, 19, 30]. There are plenty of recent studies 

presenting blockchain design based on Nakamoto consensus [9, 16, 23, 24, 32, 33]. 

There are papers that combine classic and Nakamoto consensus [4, 34]. Recent 

research on Nakamoto-based blockchain often focuses on improving its speed and 

scalability [15, 29, 35, 44]. One promising blockchain acceleration technique is to 

concurrently build a decentralized acyclic graph (DAG) of blocks as opposed to a 

chain [36, 39]. The state-of-the-art on the blockchain consensus algorithms can be 

found in this recent survey [43]. 

The need to limit the number of forks and preserve the integrity of the blockchain 

limits the block confirmation rate. Since mined blocks are broadcast to the network, 

the block size is limited by the available bandwidth. Therefore, Nakamoto-style 

consensus places a limit on throughput and latency. Presently, Bitcoin confirms 

about 7 transactions per second [28]. For comparison, VISA may process up to 

24,000 transactions per second. Likewise, Bitcoin’s latency compares unfavorably 

with other currency technologies [1]. 

Bitcoin is also a major source of power consumption. In order to try billions of 

nonces, store the roughly 250 GB, and transmit all the messages needed for the 

system the network used nearly the same amount of electricity as Ireland [41]. That 

was in 2014 since then the power consumption has only increased. These issues 

are why Bitcoin lacks scalability, this means that by adding peers to the network, 



5 
 

 
 

 
 

the network does not improve. As the mining time is always roughly ten minutes 

adding a peer only increases communication and electricity overhead. 

To combat these issues and others new blockchain algorithms have changed the 

longest chain rule, the proof-of-work algorithm, and added various other tools [9, 

23, 24, 33, 36, 42]. Even with these changes the majority of them still follow the 

same basic rules needed in this thesis. This means even as blockchain gets more 

sophisticated our contribution will still be relevant. 

Relatively few publications focus on partitionable blockchains. There are some 

studies on the partitionable classic consensus [5] using failure detectors. Partition- 

able consensus has similarities with the group membership problem, which deals 

with presenting a consistent membership set to the processes despite process and 

link failures [8, 12, 14, 17, 37, 38]. 

Extended virtual synchrony (EVS) [31] is a technique that supports continued 

operation in all partitions. That is, during network partitioning and re-connection, 

it maintains a consistent relationship between the delivery of messages and con- 

figuration changes. However, static membership is assumed and hence this is not 

easily extendable to work in blockchain systems with dynamic membership. 

Tran et al. [40] consider an algorithm that implements partitionable blockchain 

consensus in the context of swarm robotics. In swarm robotics, the robot swarms 

may experience network partitions due to navigational and communication chal- 

lenges or in order to perform certain tasks efficiently. Their solution extends EVS 

and hence is not suitable for partitionable blockchain under dynamic membership 

as we consider in this thesis. Recently, Guo et al. [20] noticed that synchronous clas- 

sic consensus protocols cannot even tolerate a short-term jitter that makes a node 

offline (or leave the system) for a very short time. Then they provided a solution 

that makes those protocols tolerant to such jitters, keeping the same consistency 

and liveness properties. 

Karlsson et al. propose a partitionable blockchain for Internet-of-things de- 

vices [22]. 

 
Contribution and outline. The rest of the thesis is organized as follows. We present 



6 
 

 
 

 
 

the partitionable blockchain in Chapter 2. Specifically, we present notation used 

throughout in Section 2.1. In Section 2.2, we formally define the Partitionable 

Blockchain Consensus Problem. To the best of our knowledge, this problem has 

been defined for the first time. In Section 2.3, we prove that this problem is not 

solvable in the purely asynchronous system. 

In Section 2.4, we define detectors that enable a solution to the problem and 

explore the relationship between the detectors. The key detector determines the 

block age: whether the block was mined before or after the network is split into 

partitions. A perfect block age detector AGE does not make mistakes. An eventual 

block age detector <AGE makes finitely many mistakes. In Section 2.5, we present 

an algorithm PART and prove that it solves the Partitionable Blockchain Consensus 

Problem when it is combined with AGE, We then extend the proof to apply to 

<AGE and an even weaker detector WAGE. We evaluate the performance of PART in 

Section 2.6. We extend this solution to handle multiple network splits in Section 2.7. 

We conclude the thesis with further algorithm extensions and possible future work 

in Chapter 3. 



7 
 

 
 

 

2 
PA RT I T I O N A B L E B L O C K C H A I N 

 
 

 
 

2.1 notation 
 
 

Communication model. A peer is a single process. All peers operate correctly and 

do not have faults. A partition is a collection of peers that can communicate. This 

communication is done through message passing. A broadcast sends a message to 

every peer in its partition. Communication channels have infinite capacity and are 

FIFO. The channels are reliable unless the network is split. A (network) split is an 

event that separates one partition into two. A message sent before the network split 

is always delivered. A message sent after the split is delivered only to the recipients 

that are in the same partition as the sender. 

Each peer contains a set of variables and commands. A network state is an 

assignment of a value to each variable from its domain. A command transitions the 

network from one state to another. Command executions are atomic and do not 

overlap. A computation is a sequence of such states which is either infinite or ends 

in a state where no command may be executed. 

We assume fair message receipt and fair command execution. Specifically, in 

any computation, a sent message is eventually received and a command is either 

executed or disabled. 

We assume there is at most one split per computation. That is, the network starts 

as one partition and it may split into two. There are no re-connections. The two 

partitions exist for the rest of the computation. 

 
Accounts and transactions. An account is a means of storing funds. Each account 

has a unique identifier. A transaction is a transfer of funds from the source to the 

target account. We assume that there is a single source and a single target account. 



8 
 

 
 

 
 

Each transaction has a unique identifier as well. An account balance is the total 

amount of funds that were transferred to the account minus all the funds that were 

transferred out. 

A client is an entity that submits transactions to the network, we assume all clients 

are honest. A transaction is submitted by broadcasting it. There may be multiple 

clients. The transaction identifiers for each client are monotonically increasing. A 

client submits each transaction to a single partition. If transactions are submitted to 

two partitions, they are considered separate transactions. 

 
Blockchain. Peers mine transactions. Such a mined transaction is a block. That is, 

we assume a single transaction per block. A mined block cannot be altered. Besides 

a transaction, each block contains an identifier of another block. Thus, a block is 

linked to another block. A blockchain is a collection of such linked blocks. A genesis 

is the first block in the blockchain. The genesis is unique. There are no cycles in the 

blockchain. That is, the blockchain is a tree. A branch of a tree is a chain of blocks 

from the genesis to one of the leaves of the tree. See, for example, a branch from 

the genesis to block 1 in Figure 2.3. 

The main chain is the longest branch in a blockchain. Ties are broken deterministi- 

cally. Permanent branch is infinite. We assume that there is at most one permanent 

branch per partition. 

Each peer operates as follows. If it receives a transaction, it stores it. The peer 

attempts to mine one of the pending transactions by linking it to the tail of its main 

chain. If it succeeds, the block is broadcast. The peer continues while there are 

pending transactions. We make the following assumption. 

Assumption 1. A peer either receives infinitely many blocks or mines infinitely many 

blocks. 

Global blockchain (tree) is the collection of all blocks mined by all peers. A fork is a 

pair of blocks that link to the same block. A fork happens when two peers succeed 

in concurrently mining blocks. See Figure 2.3 for an example. Since the genesis 

block is unique, it may never be in a fork. If there is a network split, a seed is the 

last block mined on each branch before the split. 



9 
 

 
 

 
 

A transaction is valid if its application leaves the source account with a non- 

negative balance. The transaction is invalid otherwise. An account balance is de- 

termined by the sequence of transactions on a particular branch. Therefore, a 

transaction may be valid in one branch and invalid in another. If a peer mines a 

transaction, it is valid relative to its main chain. 

A transaction is confirmed if it is in the permanent branch. It is rejected if it is 

not in the permanent branch. A transaction is resolved if it is either confirmed or 

rejected. 

A transaction is permanently valid if it is valid indefinitely or until it is resolved. 

We assume that in each partition, at least one client submits infinitely many per- 

manently valid transactions. A transaction is permanently invalid if it is invalid 

indefinitely or until it is resolved. 

We assume that the same transaction may not exist in two separate partitions. 

This means that in case of a split, the validity of a transaction may be maintained in 

one partition only. In other words, a pre-split transaction may not be valid in both 

partitions. 

In case of a network split, the account balances are also split. We assume that at 

least some funds are distributed between partitions. That is, we exclude the case 

where a partition is left with zero funds for all accounts. Otherwise we place no 

restrictions on the way that accounts are split between partitions so long as the 

total on the account balance in both partitions post-split is equal to the pre-split 

account balance in the seed block. For example, in the network there is an account a 

that has a balance of 100. Then a network split occurs. Account a may be split into 

a1 and a2. Accounts a1 and a2 cannot be in the same partition. Account a is split 

70/30, thus the balance of a1 is 70 and a2 is 30. If the accounts are split unevenly, 

each peer must know to which partition it belongs. If a is halved post-split, then 

the peers do not need to identify which partition they are in. 

A branch merge is an arbitrary interleaving of transactions of two branches such 

that the order of transactions of each branch is preserved. Two branches are mergeable 

if any branch merge retains the validity of all transactions of the two branches. 



10 
 

 
 

 
 

A seed is the block where the accounts are split. Observe that in a single compu- 

tation, accounts may potentially be split on different seeds. 

Proposition 1. Branches from different partitions are mergeable if they are split on the 

same seed. 

 

 
Detectors. A detector is a mechanism that provides information to the algorithm 

that it may not able to determine otherwise. The pure asynchronous system has no 

detectors. 

By its outputs, a detector produces a computation. Detector A is weaker than 

detector B, if there exists an algorithm such that it accepts every computation of A 

and produces a computation of B. Detector A is equivalent to B, denoted B ≡ A, if 

both A is weaker than B and B is weaker than A. Detector A is strictly weaker than B, 

denoted B >- A, if A is weaker than B but not equivalent to B. 

 
2.2 the partitionable blockchain consensus problem 

 
 

Definition 1. The Partitionable Blockchain Consensus Problem is the intersection 

of the following three properties: 

confirmation validity: no invalid transaction is confirmed; 

 
branch compatibility: permanent branches are mergeable; 

 
progress: every permanently valid transaction is eventually confirmed. 

 
The first two properties are safety while the progress property is liveness [6]. 

 

 
2.3 impossibility 

 
 

We show that it is not possible to achieve partitionable blockchain consensus in the 

asynchronous system. Intuitively, this is due to the lack of information whether a 

particular message reaches all peers during the network split. Recall that our model 



11 
 

 
 

 
 

guarantees reliable pre-split message delivery while after split this guarantee is 

only within the sender’s partition. Thus, a sender may not be sure whether all the 

peers received its message. This uncertainty is exploited in the following theorem. 

Theorem 1. It is impossible to solve the Partitionable Blockchain Consensus Problem in 

the pure asynchronous system. 

Proof. Assume that there is an algorithm ALG that solves the Partitionable Blockchain 

Consensus Problem in the pure synchronous system. 

Let two transactions t1 and t2 be such that they are valid unless one is con- 

firmed. The confirmed transaction invalidates the other. Observe that if these two 

transactions are submitted, then ALG may only accept one and only one of these 

transaction. Indeed, if ALG accepts both t1 and t2, it violates the confirmation 

validity property since it accepts an invalid transaction. Similarly, if it rejects both 

t1 and t2, it violates progress since it rejects two permanently valid transactions. 

Consider computation c1 which contains a split. Let p1 and p2 be two resultant 

partitions. Each partition has a permanent branch. Let blocks b1 and b2 be two 

mined blocks containing t1 and t2, respectively. 

In c1, peers of p1 receive b1 while peers in p2 receive b1 and b2. Since, in the 

absence of b2, b1 contains a permanently valid transaction, peers in p1 confirm b1. 

For branch compatibility, peers in p2 must also confirm b1. This means that they 

have to reject b2. 

Consider computation c2 which has the same partitions p1 and p2 as in c1. 

However, the peers in both partitions only receive b2. Due to the progress property, 

both partitions are bound to confirm this block. 

Let us compose a computation c3 with the same partitions, where peers in p1 

receive b2 while peers in p2 receive both b1 and b2. We compose the computation 

such that the behavior of peers in p1 is as in c2 and in p2 as in c1. That is, the 

peers in p1 confirm b2 while peers in p2 confirm b1 and reject b2. However, this 

means in c3 one partition confirms a transaction while the other partition rejects it. 

That is, this computation of ALG violates the branch compatibility property of the 

Partitionable Blockchain Consensus Problem. Hence, contrary to our assumption, 

ALG may not be a solution to this problem. 



12 
 

 
 

 
 

2.4 partitioning detectors 
 
 

The partitionable blockchain consensus problem is impossible without detectors. 

The lack of solution is due to the impossibility of ascertaining whether the message 

reached all peers. Let us discuss detectors that may circumvent this and enable a 

solution. A propagation detector PROP addresses this concern directly. Specifically, 

for each peer, PROP determines whether a particular block is delivered to peers 

of the entire network or just for a single partition. Note that due to the potentially 

long message delay in the asynchronous system, the output of such a detector may 

also be delayed. 

Another detector AGE determines whether the block was mined before or after 

the split. The detector classifies the pre-split block as old, and post-split block as 

new. Since the block is broadcast right after mining and message transmission is 

reliable, the only way for a message not to be delivered to all peers is if there is a 

split in the network. Hence the following lemma. 

Lemma 1. The propagation detector is equivalent to the age detector. That is: PROP ≡ 

AGE. 

 
Detector eventual AGE, denoted <AGE, is similar to AGE. Like AGE, detector 

<AGE outputs whether the block was mined before or after the split. However, 

<AGE is not reliable. Specifically, <AGE may make a finite number of mistakes. To 

put another way, for each block, <AGE is guaranteed to eventually output a correct 

result. We call AGE perfect age detector to distinguish it from eventual AGE. 

Lemma 2. The perfect AGE detector is strictly stronger than eventual AGE. That is: 

AGE >- <AGE. 

Proof. To prove strict weakness of <AGE, we show that there does not exist an 

algorithm that takes any computation of <AGE and produces a computation of 

AGE. 

Assume the opposite. Let ALG be such an algorithm. Let computation c1 of <AGE 

decide the age of a single block b. The block is old. Perfect AGE does not make 



13 
 

 
 

 
 

mistakes. Therefore ALG has to output that the block b is old, on the basis of the 

output of <AGE. Let s1 be the state of c1 where ALG outputs the decision of AGE. 

We compose the computation c2 as follows. It contains the same block b and the 

same output of <AGE up to and including s1. However, in this computation b is 

new and <AGE is mistaken, <AGE corrects its mistake later in the computation 

of c2. However, since c1  and c2  share prefixes, ALG outputs that b is old. That is, 

ALG makes a mistake. Therefore, ALG may not be an implementation of AGE. This 

means that our initial assumption is incorrect and the lemma follows. 
 

Detector WAGE, pronounced "weak-age", has output similar to AGE and <AGE. 

However, it may make infinitely many mistakes subject to the following constraints. 

For each block (i) at least one peer per partition makes only finitely many mistakes; 

(ii) every peer outputs correct results infinitely often. To put another way, WAGE 

ensures that at least one peer eventually starts classifying blocks correctly and all 

other peers at least alternate their classifications without permanently settling on 

incorrect classifications. 

Lemma 3. Eventual age detector is equivalent to weak age detector. That is: <AGE ≡ 

WAGE. 

 
Proof. All computations of <AGE are already computations of WAGE. To prove the 

equivalency, we need to show that <AGE can be implemented using WAGE. We 

discuss the implementation of the detector for a single block. For multiple blocks, 

the detector implementation runs concurrently. 

The implementation algorithm is shown in Figure 2.1. It operates as follows. 

Each peer p, maintains the last known output of WAGE for all peers. It is stored 

in array ages indexed by peer identifier. Similarly, p keeps track of the number of 

changes in the output of WAGE for each peer. This is stored in array f lips. If the 

output of WAGE changes for its peer, it updates ages[p], increments f lips[p] and 

broadcasts the update. For implemented output of <AGE, each peer outputs the 

value of WAGE with the minimum number of flips. 

Let us discuss why this implementation is correct. Let p be a peer that makes 

finitely many mistakes in a computation. In this computation, f lip[p] is finite in all 



14 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

constants 
p // identifier of this peer 
b // block whose age is evaluated 

 

variables 
f lips // array of changes in output from each peer, initially zero 
ages //array of most recent outputs of WAGE, initially old 

 
commands 
ages[p] not =  WAGE(b) −→ 

ages[p] = WAGE(b) 
increment f lips[p] 
broadcast( f lips[p], ages[p]) 

 

receive numFlips, age from id −→ 

f lips[id] := numFlips 
ages[id] := age 

 

<AGE(b) −→ // implemented output of <AGE 

output ages[id] for the id with minimum f lips[id] 
 

Figure 2.1: Implementation of <AGE using WAGE. 



15 
 

 
 

 

peers. If p makes infinitely many mistakes, f lip[p] grows without a bound in all 

peers. By the specification of WAGE, for each block b, there is at least one process 

per partition that makes finitely many mistakes. Our implementation selects the 

output of implemented <AGE(b) to be the one with the smallest number of flips. 

This way, in any computation, eventually, the output of <AGE(b) is correct. 
 

Detector SPLIT outputs whether split in the system has occurred. Observe that 

the message delivery is unreliable only in case of a network split. Therefore, the 

occurrence of the split can be determined if PROP indicates that a certain block has 

not propagated to the whole system. The converse is not in general true. Just the 

fact of a split does not allow peers to determine whether the particular block has 

reached every peer. Hence the following lemma. 

Lemma 4.  The propagation detector is strictly stronger than the split detector. That is 

PROP >- SPLIT. 

This theorem summarizes the above lemmas. 

 
Theorem 2. The relationship between partitioning detectors is as follows: 

PROP ≡ AGE >- <AGE ≡ WAGE, PROP >- SPLIT. 

2.5 algorithm part 
 
 

In this section we present an algorithm, we call PART, that solves the Partitionable 

Blockchain Consensus Problem. This algorithm is shown in Figure 2.2. 

 
Algorithm description. Each peer maintains its copy of the blockchain bc, and a 

priority queue txs of all received transactions. The transactions are arranged in the 

order of their identifiers in txs. If a new transaction is received, it is entered into txs. 

We assume that txs is never empty. See Figure 2.3 for an example of a blockchain. 

PART keeps track of the most recent output of AGE detector in the currentAge 

variable. When currentAge is new, the block is mined with split accounts. The value 



16 
 

 
 

 
 

of currentAge is recorded in the mined block. Once the block is mined PART checks 

the output of AGE against the new block and sets currentAge accordingly. 

Function mainChain() of PART operates as follows. It consults AGE for all blocks 

in bc and constructs trueTree with only those blocks whose recorded age matches 

the output of AGE. If AGE is perfect, the trueTree contains all of bc. Function 

mainChain() then builds oldTree that contains only old blocks that are connected 

to the genesis block. Function mainChain() then finds the longest branch oldBrach 

in oldTree. Ties are broken deterministically. Then, mainChain() examines the new 

branches of trueTree connected to the tail of oldBranch and selects the longest branch 

which it stores in newBranch. Function mainChain() returns the concatenation 

of oldBranch and newBrach, To summarize, mainChain() operates on the subtree 

whose age agrees with the output AGE and returns the longest old branch connected 

to the longest new branch. We refer to the output of mainChain() as main chain. 

Let us discuss the operation of mainChain() using the example in Figure 2.3. The 

oldTree there includes all blocks in the branches that run from the genesis to seeds 

A, B, C and D. Branches that run to C or D are of equal length and longer than the 

others. Assume the tie is broken in favor of C. Two new branches are attached to 

C. The branch that runs to block 2 is selected since it is the longer one. Function 

mainChain() returns the branch that runs from the genesis to block 2. Note that 

even though the branch that runs to 1 is longer overall, old blocks are considered 

first. Thus, branch to 1 has a shorter old blocks branch. 

Function nextValid() returns the fist valid transaction in txs that is not in the 

main chain. Function resetMining() checks whether the peer is currently mining 

the next valid transaction, and if not, it restarts the mining. 

PART operates as follows. Each peer continuously attempts to mine the first valid 

transaction in txs that is not in the main chain of bc. Each peer tries to mine the first 

transaction that is not already included in its main chain. If mined, the recorded 

age of the block is compared to the output of the AGE detector. If they are the same, 

the newly mined block is added to bc and broadcast. If not, new age is recorded in 

currentAge, and the block is discarded. Then, the mining of the next transaction 

starts. 



17 
 

 
 

 
 

If the peer receives a block nb mined by another peer, it checks if this block is 

linked to any of the blocks in bc. If not then this block is added to unlinked, which 

is a set of such blocks. If nb is linked to bc, the peer inserts this block into bc then 

checks if any of blocks in unlinked may now also be linked to bc. 

 
Correctness proof. 

 
Lemma 5. The main chain of every peer increases indefinitely. 

 
Proof. Let us consider the position of each peer on the global blockchain tree 

according to the peer’s main chain. The peer may change its position by receiving a 

mined block or by mining a block itself. Let us consider the position change due to 

receiving a block. If the peer receives a block linked to its current branch, it moves 

up the branch and extends its main chain. If the peer receives a block linked to a 

different branch, it may move to the new branch. Let us examine this move. Let cb 

be the current branch and nb be the new branch. 

Each branch is a concatenation of two chains: a prefix of old blocks and a suffix 

of new blocks. The move happens if the prefix of nb is longer than the prefix of cb; 

or the prefixes are the same and the suffix of nb is longer than the suffix of cb. 

If the computation contains no split, then every block that is mined is an old 

block. In this case, the new suffixes do not exist and the peer moves only if the 

prefix of nb is longer. 

If the computation contains a split, the peer may potentially move to a shorter 

new branch because it has a longer prefix. However, if there is a split, the number of 

old blocks is finite. Once every peer receives all the old blocks, such moves are not 

longer possible. That is, the number of times the peer switches to a shorter branch 

is finite. After these switches, the peer may switch branches only if it has a longer 

suffix. That is, if this new branch is longer. Thus, if the peer switches position due 

to block receipt infinitely many times, its main chain grows indefinitely. 

Let us consider a peer p, that changes position due to block receipt only finitely 

many times. This means, by Assumption 1, that p mines infinitely many transactions 

itself. In which case its main chain grows indefinitely as well. 



18 
 

 
 

 
 

Lemma 6. PART satisfies the progress property of the Partitionable Blockchain Consensus 

Problem. 

Proof. Let t be a permanently valid transaction. Let us consider the suffix of the 

computation where each peer p receives t. Once p receives t, it enters t into txs. 

Each client submits transactions in the increasing order of their identifiers. That is, 

in any computation, there is only finitely many transactions with identifiers smaller 

than t. 

By Lemma 5, the main chain of every peer increases indefinitely. Every block in 

this main chain is mined by some peer. Hence, there must be at least one peer p 

that mines infinitely many blocks in this main chain. By the design of the algorithm, 

each peer mines the valid transaction with the smallest identifier that is not in its 

main chain. Therefore, p may only mine finitely many blocks before t. Thus, an 

infinite main chain must contain t. 
 

Lemma 7. In PART, the permanent branches of all peers have a common prefix up to and 

including the seed block. 

Proof. Since the message propagation is reliable, blocks mined before split will be 

sent and received by all peers of the network. PART computes the main chain to 

be the branch that is the longest distance from the genesis to the seed. The ties are 

deterministically broken. Therefore, once all peers receive all pre-split messages, 

their main chains include the same branch and the same seed. 
 

Lemma 8. Algorithm PART satisfies the branch compatibility property of the Partitionable 

Blockchain Consensus Problem. 

Proof. According to Lemma 7, the main chains of all peers include the same seed 

block. Due to Proposition 1, branches from different partitions are mergeable. Hence 

the lemma. 
 

Theorem 3. Algorithm PART solves the Partitionable Blockchain Consensus Problem. 
 

Proof. PART never confirms an invalid transaction. Thus, PART satisfies confirma- 

tion validity. Branch compatibility satisfaction is shown in Lemma 8. Progress 

satisfaction by PART is shown in Lemma 6. 



19 
 

 
 

 

Observe that the presented algorithm operates correctly even if the detector makes 

finitely many mistakes. That is, if the detector is <AGE. We call this combination 

PART + <AGE. Indeed, once <AGE converges to the correct output for all blocks 

and each peer receives all pre-split blocks, all peers agree on the seed. From this 

point, PART operates correctly. 

Per Theorem 2, <AGE may be implemented using a weaker detector WAGE. Let 

PART + WAGE be the combination of PART and such an implementation. Such a 

combination also solves the partitioning problem. Hence the following theorem. 

Theorem 4. Algorithm PART + <AGE and PART + WAGE solve the Partitioning 

Blockchain Consensus Problem. 

 
 

2.6 performance  evaluation 
 
 

Setup. We evaluate the performance of PART using an abstract simulation. We 

study the behavior of our algorithm through computations that we construct. The 

code for our simulation is available on GitHub [2]. 

The simulated network consists of n peers. An individual computation is a 

sequence of rounds. In every round, each peer may receive a single new message 

from each other peer, do local computation, and send messages to other peers. 

Message propagation may take several rounds. Each message is delayed by a 

number of rounds. The number of rounds a message is delayed is selected uniformly 

at random. That values range from 1 to maximum delay d. Concurrent messages 

in the same channel are delayed further. That is, given a peer ps that sends several 

concurrent messages to the same peer pr, each message is impeded by a random 

delay plus the sum of the delays of all messages sent before it in that channel. Each 

peer in the network has a unique channel to every other peer. Message delivery is 

FIFO. In a single round, a peer may only receive a single message from each sender. 

The transaction submission rate is constant: one transaction per round. A submit- 

ted transaction is broadcast by a randomly selected peer. 



20 
 

 
 

 

Block mining is simulated. Mining time is as follows. Each peer has an oracle that 

tells the peer whether it mined a block. In every round, the probability of mining a 

block for each peer is uniformly distributed between 1 and d · n. 

The network size is 100 peers. A split separates the network into two equally 

sized partitions of 50 peers. Overall transaction rate or mining rate does not change 

in the event of a split. 

We measure algorithm throughput. We define it as follows: the ratio of confirmed 

to submitted transactions. We observe the change in throughput as the computation 

progresses. We run 1000 experiments per data point. 

 
Results and analysis. The results of our experiments are shown in Figures 2.4, 2.5, 

and 2.6. In all figures, we plot the throughput achieved up to a particular round 

in a computation. The figure is averaged across all computations. We measure the 

throughput for maximum network delay of 1, 2, 3, and 10 rounds. 

Figure 2.4 shows the results of the experiments with PART and a perfect AGE 

detector. That is, the detector never makes mistakes. The split occurs at round 100 of 

the computation. At first, the throughput increases until it saturates: the number of 

confirmed transactions matches the number of newly submitted ones. Throughput 

is lower with higher network delay since it takes longer for transactions and blocks 

to propagate. 

After the split, there are two smaller size partitions. The probability of a fork in 

each partition decreases. Which means that, even though the transaction rate and 

mining rate does not change with split, the transaction throughput increases. 

In Figure 2.5, we show the results of the experiments with PART and <AGE. The 

split occurs in round 100. However, <AGE continues to classify all blocks as old 

until round 200. The detector operates correctly afterwards. Between rounds 100 and 

200, while the detector classifies blocks incorrectly, transactions are not confirmed. 

Therefore, the throughput decreases. Once the detector corrects itself, the old blocks 

are ignored by the algorithm, new blocks are mined and the throughput recovers, 

This post-split throughput is expected to reach the post-split throughput of the 

perfect split detector. For example, the throughput for delay 1 would approach 0.7. 



21 
 

 
 

 
 

Figure 2.6 also shows the results of PART with <AGE. In this case, there is no 

split, however, between rounds 100 and 200, the detector classifies all blocks as new. 

The detector recovers and starts classifying all blocks as old after round 200. The 

algorithms behavior is similar to that shown in Figure 2.5. 

Note, that there is no actual split in this experiment. Therefore, after the detector 

recovers, the number of forks does not decrease. Hence, the throughput is lower 

than that shown in Figure 2.5. The throughput is expected to reach pre-split 

throughput of the perfect split detector. For example, the throughput for delay 1 

would approach 0.6. 

Our simulation results demonstrate the performance of PART under different 

parameters. They should serve as a reference for the algorithm and detector imple- 

mentation. 

 
 

2.7 multiple splits 
 
 

Let us consider the case of multiple split events in a single computation. That is, a 

network partition may further split. Each individual split event separates a partition 

into two. We introduce two new detectors to handle this case. 

The perfect multiple block age detector MAGE is the modification of AGE. MAGE 

operates as follows. For each block b, MAGE outputs the number of split events that 

happened in the partition where this block is mined. For example, if the partition 

is never split, MAGE outputs 0. If the partition split into two A and At, MAGE 

outputs 1 for the peers of both partitions. If A splits into B and Bt, then MAGE 

outputs 2 for the peers in B and Bt  and still 1 for the peers of At. 

The eventual multiple block age detector <MAGE and weak multiple block age 

detectors WMAGE are defined similarly to their single-split counterparts. 

Algorithm PART operates with MAGE, <MAGE and WMAGE without modifica- 

tions. We summarize this in the following theorem. 

Theorem 5. Algorithms PART + MAGE, PART + <MAGE, and PART + WMAGE 

solve the Partitionable Blockchain Consensus Problem with multiple splits. 



22 
 

 
 

 
 

variables 
bc // tree of mined blocks, rooted in genesis 
unlinked // set of received blocks with missing intermediate 

// links 
txs // queue of received transactions, prioritized by id 
currentAge  // true if accounts are split after partitioning 

 
functions 

mainChain() 
trueTree := blocks in bc whose age match AGE output 
oldTree := branches with only old blocks of 

trueTree rooted in genesis 
oldBranch := longest branch in oldTree 
newTree := branches with only new blocks of 

trueTree rooted in tail(oldBranch) 

newBranch := longest branch in newTree 

return oldBranch + newBranch 
 

nextValid() // returns the first valid 

// transaction in txs that is not in main(bc) 
 

resetMining() 

if not mining nextValid() 

startMining nextValid() with currentAge 
 

commands 
receive transaction t −→ 

enqueue(txs, t) 
resetMining() 

 

mine block nb −→ 

currentAge := AGE(nb) 
insert(nb, bc) 
broadcast(nb) 

resetMining() 
 

receive mined block nb −→ 

if possible to insert(nb,bc) // add new block to blockchain 

insert(nb, bc) 
while exists b in unlinked that can be inserted into bc 

insert(b, bc) 

else 
add nb to unlinked 

resetMining() 

 

Figure 2.2: Algorithm PART. 



23 
 

 
 

 
 

 

 
 
 

Figure 2.3: Global blockchain tree generated by PART. 
 
 

 
Figure 2.4: PART with perfect AGE. Split at round 100. 

 
 

 
Figure 2.5: PART+<AGE. Split at round 100, detector recognizes it at round 200. 

old block: 

new block:    

 
genesis 

 
seed B 

fork 

seed A 1 

seed C 2 

seed D 3 



24 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 2.6: PART+<AGE. No split in computation, detector mistakenly recognizes it at 

round 100, corrects at round 200. 



25 
 

 
 

 

3 
C O N C L U S I O N , E X T E N S I O N S A N D F U T U R E W O R K 

 
 

 

In this thesis, we stated the Partitionable Blockchain Consensus problem, analyzed 

and provided a detector-based solution to it. Our approach combines theoretical 

rigor with a practical problem of importance to the industry. We believe that this is 

an interesting contribution to the field. Our solution may be further extended. We 

outline some of the extensions and future work below. 

 
Partition merging, detector implementation, block purging. The pure asynchronous 

system allows us to reason about the essential properties of the algorithm that do 

not rely on timing assumptions. Nonetheless, we would like to discuss the practical 

time-based implementation concerns of our algorithm. 

Partition merging may not be studied in an asynchronous system: the split is 

either permanent or it does not occur at all. Indeed, in the asynchronous system, 

a temporary loss of connectivity is a special case of message delay. However, in 

practical systems, partitions operating independently may need to be reconciled 

once the network connectivity is restored. In this case the operation is as follows: 

the partitions exchange their trees, select the longest tip in each sub-tree, make a 

seed block out of these two tips and proceed mining on this combined seed. The 

account balances are also merged by reversing the operation of account balance 

splitting at network partition. 

The age detector may be implemented with checkpointing. The idea is as follows. 

The peers agree on a checkpoint block on every branch of the blockchain. Once the 

split occurs, if a certain block precedes the checkpoint block, it is considered old. A 

block is new if it follows the checkpoint block. To limit the rollback overhead, the 

checkpoints are moved closer to the leaves of the blockchain as the computation 

progresses. 



26 
 

 
 

 
 

Checkpoints can also be utilized to save the memory used to store the blockchain. 

Since the peers never roll back past checkpoint blocks, rather than storing individual 

old blocks, it is sufficient to just store the resultant checkpoint account balances. 

The old blocks may then be purged from memory. 

 
Fault tolerance. Let us discuss how the proposed partitionable blockchain may 

withstand other faults. Peer crashes may be problematic as the blockchain has no 

way of determining whether the split partition is operational or it crashed. In this 

case, the crashed partition leads to the loss of its share of account balances. To 

enable crash tolerance, a crash failure detector [11, 13] may need to be incorporated 

in the design. 

A robust blockchain needs to be tolerant to Byzantine faults [27] where affected 

peers may behave arbitrarily. Byzantine peers may compromise agreement on the 

seed block or on the split itself. We believe that our proposed algorithm may be 

made tolerant to such faults. However, a definitive study is left for future research. 



27 
 

 
 

 
 
 
 
 

B I B L I O G R A P H Y 

 
 

 

[1] https : / / usa . visa . com / run - your - business / small - business - tools / 

retail.html). 

[2] https://github.com/khood5/distributed-consensus-abstract-simulator. 

git. 

[3] Ittai Abraham, Srinivas Devadas, Kartik Nayak, and Ling Ren. “Brief An- 

nouncement: Practical Synchronous Byzantine Consensus.” In: DISC. 2017, 

41:1–41:4.  doi:  10.4230/LIPIcs.DISC.2017.41.  url:  https://doi.org/10. 

4230/LIPIcs.DISC.2017.41. 

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegel- 

man. “Solida: A blockchain protocol based on reconfigurable byzantine con- 

sensus.” In: arXiv preprint arXiv:1612.02916 (2016). 

[5] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. “Using the Heartbeat 

Failure Detector for Quiescent Reliable Communication and Consensus in 

Partitionable Networks.” In: Theor. Comput. Sci. 220.1 (1999), pp. 3–30. issn: 

0304-3975. doi: 10.1016/S0304-3975(98)00235-7. url: https://doi.org/10. 

1016/S0304-3975(98)00235-7. 

[6] Bowen Alpern and Fred B Schneider. “Defining liveness.” In: Information 

processing letters 21.4 (1985), pp. 181–185. 

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti- 

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady 

Laventman, Yacov Manevich, et al. “Hyperledger fabric: a distributed oper- 

ating system for permissioned blockchains.” In: Proceedings of the Thirteenth 

EuroSys Conference. 2018, pp. 1–15. 

https://usa.visa.com/run-your-business/small-business-tools/retail.html)
https://usa.visa.com/run-your-business/small-business-tools/retail.html)
https://github.com/khood5/distributed-consensus-abstract-simulator.git
https://github.com/khood5/distributed-consensus-abstract-simulator.git
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.4230/LIPIcs.DISC.2017.41
https://doi.org/10.1016/S0304-3975(98)00235-7
https://doi.org/10.1016/S0304-3975(98)00235-7
https://doi.org/10.1016/S0304-3975(98)00235-7


28 
 

 
 

 
 

[8] Özalp Babaoğ lu, Renzo Davoli, and Alberto Montresor. “Group membership 

and view synchrony in partitionable asynchronous distributed systems: Spec- 

ifications.” In: ACM SIGOPS Operating Systems Review 31.2 (1997), pp. 11– 

22. 

[9] Iddo Bentov, Rafael Pass, and Elaine Shi. “Snow White: Provably Secure 

Proofs of Stake.” In: IACR Cryptology ePrint Archive 2016.919 (2016). 

[10] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance and 

Proactive Recovery.” In: ACM Trans. Comput. Syst. 20.4 (Nov. 2002), pp. 398– 

461. issn: 0734-2071. doi: 10.1145/571637.571640. url: http://doi.acm. 

org/10.1145/571637.571640. 

[11] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. “The weakest 

failure detector for solving consensus.” In: Journal of the ACM (JACM) 43.4 

(1996), pp. 685–722. 

[12] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette 

Charron-Bost. “On the impossibility of group membership.” In: Proceedings of 

the fifteenth annual ACM symposium on Principles of distributed computing. 1996, 

pp. 322–330. 

[13] Tushar Deepak Chandra and Sam Toueg. “Unreliable failure detectors for 

reliable distributed systems.” In: Journal of the ACM (JACM) 43.2 (1996), 

pp. 225–267. 

[14] Gregory V Chockler, Idit Keidar, and Roman Vitenberg. “Group communi- 

cation specifications: a comprehensive study.” In: ACM Computing Surveys 

(CSUR) 33.4 (2001), pp. 427–469. 

[15] Christian Decker, Jochen Seidel, and Roger Wattenhofer. “Bitcoin meets strong 

consistency.” In: Proceedings of the 17th International Conference on Distributed 

Computing and Networking. 2016, pp. 1–10. 

[16] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 

“Bitcoin-ng: A scalable blockchain protocol.” In: NSDI. 2016, pp. 45–59. 

https://doi.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640
http://doi.acm.org/10.1145/571637.571640


29 
 

 
 

 
 

[17] Alan Fekete, Nancy Lynch, and Alex Shvartsman. “Specifying and using a par- 

titionable group communication service.” In: ACM Transactions on Computer 

Systems (TOCS) 19.2 (2001), pp. 171–216. 

[18] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility 

of Distributed Consensus with One Faulty Process.” In: J. ACM 32.2 (Apr. 

1985), pp. 374–382. issn: 0004-5411. doi: 10.1145/3149.214121. url: https: 

//doi.org/10.1145/3149.214121. 

[19] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai 

Zeldovich. “Algorand: Scaling byzantine agreements for cryptocurrencies.” 

In: OSDI. 2017, pp. 51–68. 

[20] Yue Guo, Rafael Pass, and Elaine Shi. “Synchronous, with a Chance of 

Partition Tolerance.” In: CRYPTO. 2019, pp. 499–529. 

[21] Kendric Hood, Joseph Oglio, Mikhail Nesterenko, and Gokarna Sharma. “Par- 

titionable Asynchronous Blockchain.” In: 32nd ACM Symposium on Parallelism 

in Algorithms and Architectures (2020, submitted for publication). 

[22] Kolbeinn Karlsson, Weitao Jiang, Stephen Wicker, Danny Adams, Edwin 

Ma, Robbert van Renesse, and Hakim Weatherspoon. “Vegvisir: A partition- 

tolerant blockchain for the internet-of-things.” In: 2018 IEEE 38th International 

Conference on Distributed Computing Systems (ICDCS). IEEE. 2018, pp. 1150– 

1158. 

[23] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 

“Ouroboros: A provably secure proof-of-stake blockchain protocol.” In: Annual 

International Cryptology Conference. Springer. 2017, pp. 357–388. 

[24] S King and S Nadal. “Peercoin–secure & sustainable cryptocoin.” In: Aug-2012 

[Online]. Available: https://peercoin. net/whitepaper () (2012). 

[25] Andrei Kirilenko, Albert S Kyle, Mehrdad Samadi, and Tugkan Tuzun. “The 

flash crash: High-frequency trading in an electronic market.” In: The Journal 

of Finance 72.3 (2017), pp. 967–998. 

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121


30 
 

 
 

 
 

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals 

Problem.” In: ACM Trans. Program. Lang. Syst. 4.3 (July 1982), pp. 382–401. 

issn: 0164-0925. doi: 10.1145/357172.357176. url: https://doi.org/10. 

1145/357172.357176. 

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals 

problem.” In: Concurrency: the Works of Leslie Lamport. 2019, pp. 203–226. 

[28] Chenxing Li, Peilun Li, Dong Zhou, Wei Xu, Fan Long, and Andrew Yao. 

“Scaling nakamoto consensus to thousands of transactions per second.” In: 

arXiv preprint arXiv:1805.03870 (2018). 

[29] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, 

and Prateek Saxena. “A secure sharding protocol for open blockchains.” In: 

CCS. 2016, pp. 17–30. 

[30] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. “The 

Honey Badger of BFT Protocols.” In: CCS. Vienna, Austria: ACM, 2016, 

pp.  31–42.  isbn:  978-1-4503-4139-4.  doi:  10 . 1145 / 2976749 . 2978399.  url: 

http://doi.acm.org/10.1145/2976749.2978399. 

[31] Louise E. Moser, Yair Amir, P. M. Melliar-Smith, and Deborah A. Agarwal. 

“Extended Virtual Synchrony.” In: ICDCS. 1994, pp. 56–65. 

[32] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system,” 2008. 

[33] Rafael Pass and Elaine Shi. “Fruitchains: A fair blockchain.” In: Proceedings of 

the ACM Symposium on Principles of Distributed Computing. 2017, pp. 315–324. 

[34] Rafael Pass and Elaine Shi. “Hybrid consensus: Efficient consensus in the 

permissionless model.” In: DISC. Schloss Dagstuhl-Leibniz-Zentrum fuer 

Informatik. 2017. 

[35] Rafael Pass and Elaine Shi. “Thunderella: Blockchains with optimistic instant 

confirmation.” In: Annual International Conference on the Theory and Applications 

of Cryptographic Techniques. Springer. 2018, pp. 3–33. 

[36] Serguei Popov. The Tangle. Tech. rep. https://iota.org/IOTA_Whitepaper. 

pdf. The IOTA Foundation, 2018. 

https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/2976749.2978399
http://doi.acm.org/10.1145/2976749.2978399
https://iota.org/IOTA_Whitepaper.pdf
https://iota.org/IOTA_Whitepaper.pdf


31 
 

 
 

 
 

[37] André Schiper. “Dynamic group communication.” In: Distributed Computing 

18.5 (2006), pp. 359–374. 

[38] André Schiper and Sam Toueg. “From set membership to group membership: 

A separation of concerns.” In: IEEE Transactions on Dependable and Secure 

Computing 3.1 (2006), pp. 2–12. 

[39] Yonatan Sompolinsky and Aviv Zohar. “Secure high-rate transaction process- 

ing in bitcoin.” In: International Conference on Financial Cryptography and Data 

Security. Springer. 2015, pp. 507–527. 

[40] Jason A. Tran, Gowri Sankar Ramachandran, Palash M Shah, Claudiu Danilov, 

Rodolfo A. Santiago, and Bhaskar Krishnamachari. “SwarmDAG: A Partition 

Tolerant Distributed Ledger Protocol for Swarm Robotics.” In: Ledger. 2019. 

[41] Harald Vranken. “Sustainability of bitcoin and blockchains.” In: Current 

opinion in environmental sustainability 28 (2017), pp. 1–9. 

[42] Gavin Wood. “Ethereum: A secure decentralized generalized transaction 

ledger.” In: Ethereum project yellow paper 151 (2014), pp. 1–32. 

[43] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou. A Survey of 

Distributed Consensus Protocols for Blockchain Networks. 2019. arXiv: 1904.04098 

[cs.CR]. 

[44]  Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. “RapidChain: 

A Fast Blockchain Protocol via Full Sharding.” In: IACR Cryptology ePrint 

Archive 2018 (2018), p. 460. 

https://arxiv.org/abs/1904.04098
https://arxiv.org/abs/1904.04098

